The H∞−calculus and sums of closed operators
نویسندگان
چکیده
We develop a very general operator-valued functional calculus for operators with an H∞−calculus.We then apply this to the joint functional calculus of two sectorial operators when one has an H∞calculus. Using this we prove theorem of Dore-Venni type on sums of sectorial operators and apply our results to the problem of Lp−maximal regularity. Our main assumption is the R-boundedness of certain sets of operators, and therefore methods from the geometry of Banach spaces are essential here. In the final section we exploit the special Banach space structure of L1−spaces and C(K)−spaces, to obtain some more detailed results in this setting. Mathematics Subject Classification (2000): 47A60, 47D06
منابع مشابه
On certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملA Characterisation of Lambda Definability with Sums Via TT-Closure Operators
We give a new characterisation of morphisms that are definable by the interpretation of the simply typed lambda calculus with sums in any bi-Cartesian closed category. The ⊤⊤-closure operator will be used to construct the category in which the collection of definable morphisms at sum types can be characterised as the coproducts of such collections at lower types.
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملThe Sums and Products of Commuting AC-Operators
Abstract: In this paper, we exhibit new conditions for the sum of two commuting AC-operators to be again an AC-operator. In particular, this is satisfied on Hilbert space when one of them is a scalar-type spectral operator.
متن کاملA characterization of orthogonality preserving operators
In this paper, we characterize the class of orthogonality preserving operators on an infinite-dimensional Hilbert space $H$ as scalar multiples of unitary operators between $H$ and some closed subspaces of $H$. We show that any circle (centered at the origin) is the spectrum of an orthogonality preserving operator. Also, we prove that every compact normal operator is a strongly orthogo...
متن کامل